
Michael Kellett
Electronics and Software Consultant

Comparing AD218X and TI54XX family DSP
performance

Introduction
The aim of this experiment is to compare the performance of the processors
and manufacturers C compiler tools using a very simple benchmark. The idea
is to use a simple C coding style and see how well the compilers and the
chips cope with it.
The end result is the number of effective MAC (multiply accumulate)
operations the chips achieve per clock cycle – both families can perform one
MAC every cycle as a peak rate.

The Benchmark Code
The plan was to call a two section biquad filter function (from the
manufacturers library) from a for() loop 100 times and use the manufacturers
simulators to count the number of cycles used between two marker
statements.
This is not an efficient coding style in terms of performance (due to the
overhead involved in calling the library function) but it gives a good idea of the
performance that will be achieved without a lot of processor and tool specific
tuning.
The experiment went well as far as the AD218X was concerned but the TI
tools available (from the ‘5402 DSP Starter Kit) did not include a simulator.
The TI code was timed running on real hardware using profiling from the Code
Composer development suite. To confuse matters a little more TI do not
supply a straight single sample biquad filter routine but one which takes a
vector input. This is slower for single sample operation but faster when burst
processing is allowable.
Each biquad section needs 5 MAC operations to compute so really efficient
code should approach 7 or 8 cycles per biquad or better than 0.5 MACs per
cycle.
AD2181 code

#include <filters.h>
int pm coeffs[] = {1,2,3,4,5,6,7,8,9,10}; /* set up filter coefficients, meaningless filter

data */
int input, output, state[5]; /* declare globals for input, output and the filter

state */
int main(void)
{
int i;
int j;
for(i=0;i < 5;i++) /* initialise the filter state */
 {
 state[i] = 0;
 }
j = 0; /* place to set break point */
for(i = 0; i < 100; i++)
 {
 input = i;
 output = biquad(input, coeffs, state, 2); /* call the filter 100 times */
 }
j = 1; /* place to set breakpoint */
}

Page 1 of 3

Michael Kellett
Electronics and Software Consultant

TI5402 Code

#include <board.h>
#include <math.h>
#include <stdio.h>
#include <tms320.h>
#include <dsplib.h>

void delay(int);

#define NX 1
#define NBIQ 2

DATA x[NX] ={
-617};

#pragma DATA_SECTION (h,".coeffs")
DATA h[5*NBIQ] ={ /* C54x: a1 a2 b2 b0 b1 ... */
30857,
30152,
-26684,
-18838,
4924,
32118,
14852,
-30453,
22232,
-3184,
};

#pragma DATA_SECTION (dbuffer,".dbuffer")
DATA dbuffer[2*NBIQ];
DATA *dp = dbuffer;
DATA r[NX];

void main()
{
short i;

for (i=0;i<NX;i++) r[i] =0; // clear output buffer (optional)
for (i=0; i<2*NBIQ; i++) dbuffer[i] = 0; // clear delay buffer (a must)

brd_init(100); /* initialise the development board */

while (1)
 {
 brd_led_toggle(BRD_LED0); /* twinkles an LED to show its running */
 delay(100);
 }
}

void delay(int period)
{
int i;

for(i=0; i<period; i++)
 {
 iircas5(x,h,r,&dp,NBIQ, NX);
 }
}

Results
The AD2181 simulation required 5913 cycles for 100 loops which is 5.9 cycles
per MAC or 0.17 MACs per cycle.
The TI5402 processor required:
NX Cycles Total MACs MAC/cycle
1 11212 1000 0.089
4 20812 4000 0.192
8 33612 8000 0.238
16 59212 16000 0.270

Page 2 of 3

Michael Kellett
Electronics and Software Consultant

Summary
In this simple test the AD218X toolset and chip gave better straight out of the
box results than the TI equivalents.
The TI vectorised filter gave much better results when samples were
processed in a block (as would be expected).
The same technique could be adopted with the AD processor but there is no
standard library function to implement it.
The conclusion from this simple experiment is that to get anything like the best
performance from these processors at least some hand crafting of assembler
code will be required.
In order to investigate the possibilities further a more realistic benchmark task
is required (because the present simple one can be optimised to nothing !).
If you would like to discuss low power DSP techniques or low power low
frequency analogue design problems please contact me.

Michael Kellett,
Electronics and Software Consultant.
© September 2001
mk@mkesc.co.uk www.mkesc.co.uk

Page 3 of 3

